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Abstract

A level-of-detail (LOD) modeling in computer graphics is to control the number of
polygons in mesh at run-time to reduce the rendering cost of small, distant, unimportant
geometry. In this paper, we propose the marching cube octree as a scheme for representing and

generating the mesh of various level-of-details efficiently.

In the surface reconstruction, modified marching cubes are used for reconstructing
the initial mesh. Instead of a midpoint which is used in the original algorithm [57], the ratio of
adjacent vertex is used for the triangulation. The results are also feasible when low resolution

data is given. These marching cubes are used for the leaf nodes of the marching cube octree.

The marching cube octree is constructed using an octree structure with the marching
cubes. To support continuous LOD between levels the priority numbering is proposed. And all
nodes are numbered by proposed algorithm. Using adjacent node check and priority queue,

node priority numbering can traverse both breadth and depth.

The LOD meshes are generated at run-time using proposed efficient algorithm. It
triangulates only needed nodes of the marching cube octree to cover up the whole surface of
mesh. Using the priority numbers on nodes and flagging, the LOD mesh can be generated by
only referencing without floating point operations which the other LOD models need.
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Chapterl. Introduction

1.1 Research Background

In computer graphics, there is always the tradeoff between realism and speed. For
the realistic scene, the more detailed model is used but the rendering time is slower. For the
fast scene generation, the less detailed model is used and the rendering time is reduced but the

less realistic the scene is.

In 3D (three-dimensional) graphics systems like virtual reality, mixed reality, arcade
games and etc., objects are represented by a set of triangles, called a mesh. Meshes
constructed from real 3D objects are widely used. Meshes generated with range sensors are
constructed with plenty of triangles to describe complex 3D objects in detail. The objects can
be described in detail when many triangles are used, although the rendering process is slow.
Objects can be rendered faster when small triangles are used, but they will then be described

coarsely.

Although computers are fast becoming more and more powerful, they are still not
enough to render complex 3D objects in real time. Because the number of triangles in the
model has increased rapidly, the latest hardware can not afford to handle these complex
models effectively. For example, in The Digital Michelangelo Project [1], the number of
polygons in the raw dataset of Michelangelo’s David, the left picture of (Fig. 1.1), is about 2
billions. The lossless compressed size of it is about 32 GB. Another example is the dataset of
The Great Buddha Project [2] in the right picture of (Fig. 1.1). The number of polygons is

bigger than a million.



Fig. 1.1: Large polygon models

(Left: Digital Michelangelo Project [1], right: Great Buddha Project [2])

We should generate and use meshes that fit the performance of the rendering system.
System performance is changed continuously because the number of objects or the complexity
of the background scene changed. If we can control the LOD (level-of-detail) of the object, we
can construct an effective computer graphics system. LOD modeling consists of the
representation of the mesh and the algorithm to generate the mesh of a certain LOD.

1.2 Problem Definition and | ssues

The concept of LOD is showed in (Fig. 1.2). There are three rendering meshes of
Woman model from Cyberware™. The left one is the less simplified and the right one is most
simplified. In the lower part of (Fig. 1.2), when the model is farther from the viewer, the most
simplified one is used for rendering.

The more simplified the model is, the fewer triangles used in rendering and the
rendering speed is faster.



Fig. 1.2: The concept of LOD

(Upper: mesh is simplified, lower: creating LODs of small, distant, unimportant geometry)

The simplified mesh is used not only distant position but also in small or
unimportant portions of the scene. When we handle a few high-complexity objects in CAD or
large assemblies of many small objects, the simplified model is needed to reduce the rendering

cost too.

Controlling the number of polygons in the mesh is known as LOD modeling and it
has been a hot issue in computer graphics field for the decade. In the early stage, only the
simplification of model just generated from range image had been researched and the result is
applied for only static discrete LOD. But recently the control of LOD has been studied and

they can adjust LOD at runtime.

For given point sel?, normal setN and some LOD numbéy the problem is defined



as finding a certain functiofl that returns triangle sets satisfying LOD dedree

P= p{p| isinputpointfronrangscanne}
N = fi, h, isnormalectorof p pOP}
| =[ng,n,Ing,m ON,ny <ny

FI'1 B N,=)t { | istrianglsatisfyingLODgenerateétom P, N}

The LOD modeling consists of the representation (data structure) of the mesh and

the algorithm to generate the mesh of a certain LOD to implement the fuRttion

Instead of range images, if the input data are mesh format, the definition can be

changed as follows,

V = { \ isvertexofmesh
T= ¢ {, istrianglsetof v vOV}
| = [no’l’]l]l']o,l"ll 0 N,no <n

FI 1 \(T,=)t { | istrianglsatisfyingLODgeneratetomV, T}

Previous methods of LOD modeling are mostly concentrated on a precise
description of the original object. The creations of the representations are very complex or
expensive and the mesh generation is too slow to be used in practice. Most commercial real-
time systems have their own model. In a real-time system, user interactiveness is more

important than the precision of the description.

Since the fundamental research [3] on LOD modeling, there have been many issues
studied. They are surveyed well in [4]. Some of them are basic issues of computer graphics
and some of them are only specific to LOD modeling. The geometric accuracy and the mesh
generation time have been researched massively and are relatively important but other issues

are not ignorable.



- Geometric accuracy

This is the question “How accurate or similar to the original mesh (initial mesh)
geometrically the output mesh generated from LOD modeling is?” There are many geometric
attributes from the topology to 3D coordinates of vertices. The mesh simplification method is
also important for this purpose. The methodology of simplification is most characteristic
feature of LOD modeling. The geometry removal method has the advantage of preserving the
geometry information. If a proper fitting algorithm is used, the adaptive subdivision method

can also preserve that.

- Visual fidelity

The visual fidelity is the problem of human perception. It is much difficult to
measure than geometry. Some methods consider the human’s perception mechanism in
graphical devices. When the visual fidelities are similar, the difference of the geometrical
accuracy is not significant. The dominant features like the textures are needed to consider in

LOD modeling for the visual fidelity.

- Preprocess time

The preprocess time is seemed to be not so important to the application which use
the results of LOD modeling. But, for example, when the CAD using model designing that
create LOD model and need to see the result several times in middle of the stages, the
preprocess time is very important. When the numbers of the objects are large like in museum,

the preprocess time is preferred to fast.

- Mesh generation efficiency

The mesh generation is not the same as the rendering time. But it is an important
factor in system performance. The LOD mesh generation method is divided into two

categories; a discrete (static) LOD and a continuous (dynamic) LOD.



The traditional mesh simplification methods can be applied to the discrete LOD
directly. These methods can create multiple versions of every object, each at a different level
of detail, in the off-line preprocess time. They can offer proper version of the object by
switching the preprocessed models. The more models are, the bigger the memory is used. The

memory and the granularity are a trade-off relation in this approach.

In a continuous LOD modeling approaches, the continuous spectrum of the LOD of
the object can be generated at runtime. It is more important that the algorithm is fast and

efficient in that case.

- Error metrics

There is no standard error metrics for LOD modeling. Each approach has its own
error metric which has the advantages and the disadvantages. All the metric are a quantitative
but the perceptional correctness is not guaranteed. Measurements about a human perception
are hard to evaluate. The scope of metric depends on which operator is used in the modeling,

local or global.

- Other issues

In practically, it is important to the LOD model can be easily implemented. To easy
implementation, the codes of data structures and algorithms must be simple. It is not always

easy to code that the idea is conceptually clear.

The complete automation of the LOD control of the scene is the factor to consider
too. For this ends, the levels of detail of meshes are determined automatically by many
parameters. But many factors like the size of a display device are dependent to various user

environments.



1.3 Research Objective and Outlines

In this paper an efficient object model which is used for computer graphic system is
developed. A system performance can be better by reducing rendering time. The LOD
modeling of 3D object can reduce the rendering time efficiently. Among the issues of

researches, our method was focused at the time of the LOD model and mesh generation.

There are three stages for the LOD modeling. Marching cube octree, data structure
for LOD modeling, is constructed from range images or initial mesh. Then node priorities are
number to each one for a continuous LOD. Finally, LOD meshes are generated using efficient
algorithm which is referring only needed nodes at runtime.

In the marching cube octree construction stage, modified marching cubes are used
for the nodes of octree. In the original marching cube algorithm [57], the vertices of triangles
are placed at midpoint of the edge of the cubes. Instead of a midpoint, the ratio of adjacent
vertex is used for the triangulation [5]. The octree with marching cube node is studied in [62]
for mesh simplification. They use the original marching cube structures and no consideration
for LOD. They can merge the surfaces that triangulated from the particular marching cubes
because the normal and the vertices are limited.

After marching cube octree construction, whole nodes are numbered by priorities.
The node priority numbering is needed to support continuous LOD between levels. Each level
has the marching cube of double size in one direction. Using adjacent node check and priority

gueue, node priority numbering can traverse both breadth and depth.

LOD meshes are generated at runtime using efficient algorithm. It refers only
needed nodes of the marching cube octree to cover up the whole surface of mesh. Using the
priority numbers on nodes and flagging, the LOD mesh can be generated without floating
point operations which the other LOD modeling should do.

The contributions of this paper are as follows; to support a continuous LOD,



modifying the marching cube octree (vertex ratio on edge of marching cube) and priority
numbering the nodes with an algorithm that can simplify flat area more. An efficient LOD

mesh generation which refers only needed nodes without floating point operations.

In the next chapter, the previous researches are introduced. Discrete LOD modeling,
which is called mesh simplification generally, and continuous LOD modeling are surveyed.
The marching cube and an octree are introduced too. In chapter 3, an overview of the system
is presented by a flow diagram and a framework diagram. An initial mesh is reconstructed
using the modified marching cube algorithm in chapter 4. In chapter 5, the marching cube
octree is constructed and its nodes are numbered in priority. Along with the marching cube
octree, online LOD mesh generation framework is described and the implemental results are
presented in chapter 6. In chapter 7, the discussion with the comparison to other research is

presented. Finally, summary and future works are outlined in chapter 8.



Chapter2. Previous Research

2.1 Level-of-detail Modeling

In 1976, Clark [3] presented a fundamental works in a computer graphics field.
These are also the basic principles of level of detail. A redundancy for few pixels was
addressed and a hierarchical scene graph was proposed for view frustum culling. It can be said

a historical origin of computer graphics.

The earliest application of LOD modeling was flight simulators [7]. Several detailed
objects were created by hands. In 1990s, lots of researches had burst out. A mesh was
simplified by vertex decimation in [8]. A vertex clustering within grid was proposed in [9]. In
[10], an optimization based predictive schedulers for selecting LOD was researched. For
continuous LOD, progressive mesh was proposed in [26]. After the progressive mesh, the

researches became more various.

Vertex hierarchies for view-dependent LOD were studied in [32] [11] [12]. Quadric
error metrics measuring simplification error was proposed in [13]. Guaranteed bounds on
surface and texture distortion were developed in [14] [15]. In [16] [17], a principled

simplification of topology was addressed.

There is well organized book ‘Level of detail for 3D graphics’ [6]. To study more
about LOD modeling, it can be a good manual. According to the survey paper [18], there are
three main categories of researches on LOD modeling by geometric criteria: 1) Algorithms
that adaptively subdivide an existing mesh with multi-resolutional approaches, [24] [25] and
2) Algorithms that remove geometry features such as vertices, edges, etc., approximate the
most detailed mesh, and construct parameterization [26] [27]. 3) Algorithms that produce the
simplified model with the sampled geometry. The simplification methods are also well

surveyed and organized in [19].



2.1.1 Adaptive Subdivision

An adaptive subdivision method starts from a very simple base model. It continues
subdividing and adding some details to it recursively. If the method is a discrete LOD
modeling, it stops when the error exceed some user tolerance. For a continuous LOD, it saves

the details in each step and produces the LOD mesh using them at runtime.

Many adaptive subdivision methods have been researched since the fundamental
work by [20]. The concept of the subdivision and adaptation was proposed and it is the basic
idea of the computer graphics. About a terrain data, In the 3D flight simulator application, the

triangle bintree is used for LOD modeling of a terrain in real-time is proposed in [21].

The wavelet decomposition approach is very useful because one of its features is
multi-resolutional. But a hierarchical decomposition is needed and is not so efficient
computationally. The wavelet approaches that using regularly gridded meshes are proposed in
[22] [23].

Fig. 2.1: Wavelet decomposition approach

In the field of the continuous LOD modeling, an adaptive subdivision and analysis
method that applies wavelet-based multi-resolution analysis to an arbitrary topology surface
was proposed [24] [25]. The basic concept of wavelet-based decomposition approaches is
showed in (Fig. 2.1). This method can perform smooth parameterization at any LOD and can
be applied to adaptive simplification, compression, progressive transmission and editing [28]
[29] [30]. The wavelet-based method makes some of these advantages possible. Nevertheless,

this method renders the making of the base mesh expensive and slow. Too many triangles are
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needed and generated when resolving small local features.

To overcome these drawbacks, a new algorithm, MAPS, was proposed [31]. The
MAPS algorithm uses hierarchical simplification, defined by vertex removal, flattening and
retriangulation, to induce a parameterization of the original mesh over a base mesh. Although
this method can reduce the complexity of the base mesh formulation and resolve small
features well, it cannot support view dependency rendering and collision detection, which are

important in computer graphics systems.

2.1.2 Geometry Removal

A geometry removal method starts from the original model. It continues selecting
geometries to be deleted and removing. This geometry can be vertices or faces or edges or
combinations of them. For a discrete LOD, it stops when the produced mesh meets the user-
dependent degree of error. If it is a continuous LOD modeling, the reverse operation of the

remove is stored and used for generate the LOD meshes.

Merging coplanar or almost coplanar facets and re-triangulating approaches are
proposed in [32] [33] [34]. The merging is done by a co-planarity test. By bounded
approximations and more robust re-triangulations, the ‘superface’ improves these approaches
in [35].

The vertex, edge or face decimation methods remove the geometries iteratively
under local error criteria. These approaches preserve mesh topology generally. The ‘mesh
decimation’ method removes the vertices by a distance or angle criterion in [8]. The resulting
holes are patched by re-triangulation. The candidate vertex is chose by a local error test. The

simplification methods by collapsing edges [36] [37] [38] and faces [39] are also researched.

The decimation approaches supporting the global error control have been proposed.
The ‘simplification envelope’ method presents bounded error control using the offset surfaces
in [14]. The heuristic approaches of evaluating the global error when the vertices are removed

and re-triangulated are proposed in [40] [43] [37] [36]. These methods are all under an

11



incremental simplification framework. The edge flipping while modifying re-triangulated
patches for improving approximation accuracy are proposed in [41] [42]. These decimation

approaches are extended to 3D simplicial decompositions (tetrahedral sets) in [44] [45] [46].

The vertex clustering approach that clusters vertices and merges into a new
representative vertex is proposed in [9]. This method is efficient but can not preserve the
topology and a shape of small area. The qualities of visibility and geometry have been
improved in [47]. There is some perceptual degradation in this approach. For improving visual
quality, couples of edges in the cluster are merged in [48]. To evaluate an error efficiently to
these approaches, the ‘quadric error metric’ is proposed in [13]. This method can simplify

disconnected or non-manifold meshes.

An energy function is defined in the ‘mesh optimization’ [49], to measure the quality
of each simplified meshes. Collapsing, swapping or splitting is allowed on mesh edges to

optimize the energy function. The geometry of the lowest increase in the function is removed.

edge collapse

V4 V=
~__—

vertex split

Fig. 2.2: Progressive meshes

For the continuous LOD modeling, another algorithm called ‘progressive mesh’ was
proposed that makes the new mesh by defining the edge collapse and the vertex split operation,
which illustrated in (Fig. 2.2), and applying these to the detailed mesh [26]. In addition, a new
format was developed for saving and transmitting the triangulated geometric model [27]. The

Progressive Mesh method can be applied to adaptive simplification, compression, progressive

12



transmission and view dependency rendering [50]. The model generation is relatively slow,
however, because the simplification is based on the energy function.

Triangle strips with edge collapse operator is used for real-time LOD mesh
generation in [51]. The view-dependent meshing of part of the whole data is proposed in [52].

The whole data is in external memory and only part of it is loaded.

2.1.3 Sampling

A sampling method starts from the original model. It samples the geometry and fits
the sampled data. For the discrete LOD modeling, the number of the sampled or the size of

sampling grid is fixed. It can be controlled when the continuous LOD modeling is applied.

Randomly new vertices are inserted and then moved on the mesh surface to be
displaced over maximal curvature areas. The old vertices are deleted and the new re-tiled mesh
is generated from the new vertices in [54].

An intermediate octree representation is used for producing simplified boundary
representation of mesh in [55]. An intermediate hierarchical representation based on voxels
with adaptive surface fitting was proposed in [56] [16].

2.2 Surface Reconstruction

There are several ways of generating mesh from multiple range data. Using the
divide-and-conquer method, the marching cube algorithm positions the cubes consisting of
eight vertices on the surface and proceeds cubes to make polygons in [57]. Several range data
are combined to generate a single mesh using registration of range images and mesh zippering
in [63]. The volumetric representation including a weighted signed distance function was
defined and used to make the mesh in [59]. Mesh generation methods from the range images

proposed so far can be classified into the following two.
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One type deals with each point of the range image one by one, and the other adds
up the meshes into one whole mesh after constructing the mesh from each of the scanned
range images in [63] [57]. The latter makes use of the connectivity and topology between the
points to easily make the mesh from one range image. But to generate a whole mesh from
these meshes such methods as high-cost zippering are needed. The former one deals with all
point independently without zippering. This method can easily add new points to the mesh but

has difficulty estimating the connectivity and topology of the points.

Taking advantage of these two methods, we propose here an improved algorithm
that exploits information from range scanning based on the former method. We use the
marching cube to generate mesh from a range image. The marching cube was proposed and
used to construct 3D models from medical images like CT and MRI images in [57]. It is used

to construct 3D meshes from unorganized points in [58].

2.2.1 Marching Cube

e

T
) , ................ ,e --------------- @

il

Fig. 2.3: Marching squares (2D)
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Marching cube was proposed in [57] and it is an algorithm of a surface construction
from 3D medical data. The 3D medical data are volumetric data which are sometimes called
voxels. The surface generated from this algorithm is an isosurface. Isosurface is a surface of a
constant value corresponding to isocontour in 2D. The output of the algorithm is used for a
visualization of 3D data. The ambiguity problem of the marching cube is solved in [90]. The

algorithm modified for a surface construction of range data in [58].

The algorithm proceeds through the data field with an imaginary cube. In 2D data,
the cube is corresponding to the square. For convenient we call it ‘marching square’. The right
side of (Fig. 2.3) is the configuration of the marching square. Considering symmetry and
rotations, the total number of the configuration is only 6. A dark circle on the vertex means an
‘in’ configuration which is inside of the area and a vertex without a circle means an ‘out’

configuration which is outside of the area.

The left side of (Fig. 2.3) is an example of the algorithm. For the area surrounded by
a curved line, we can get a boundary approximation. This is the collection of the line segment
which is produced by each imaginary marching square. A three-dimensional analog of the
boundary line segments is a surface triangle. And the marching cubes are the three-

dimensional analog of the marching squares.

Considering symmetry and rotations, the total number of the unique configuration of
marching cubes is only 15. The marching cubes are illustrated in (Fig. 2.4). The vertex that
covered by a small sphere is corresponding to an ‘in’ configuration which is inside of the 3D
object. The vertex without any sphere is corresponding to an ‘out’ configuration. That is
outside of the object.

The surface approximation is gathered by the triangles generated from each
marching cube. The surface of the object is usually curved one except the object is CAD
product. The result of marching cube algorithm is the set of triangles which forms the whole

surface of the object. This set is called ‘mesh’in computer graphics.
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The advantage of the marching cube is efficiency and parallelism. The marching
cube is computationally efficient because it produces the triangles only by referring a look-up
table. The operation in each cube is local, so the error in the cube doesn't affect the others. The

relatively higher cost operation like zippering [63] isn’t needed in the marching cube.

P f) P f) o f)
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Fig. 2.4: Marching cubes (3D)

We have two problems to run marching cube. The first, we get in/out configuration
of the vertex in the marching cubes and the second, the edge intersection between the edge in
the marching cube and the surface of the object. In the original marching cube algorithm [57],
the input data is array of binary data like CT image. So the in/out configuration is

automatically set by the input. And the intersection is fixed to the mid-point of the edge.

16



2.3 Spatial Indexing

There are several indexing methods for object in space of computer graphics. A
mesh (grid) is commonly used for surface data. A quadtree and an octree are for partitioning a
2D and 3D space. A R-tree and UB-tree are used for efficient storing and retrieving of spatial
data.

- Mesh (Grid)

A mesh (grid) is a spatial indexing with 2D surface of space using set of cells. Each
cell is identified uniquely. The cells can be a square or rectangular, triangular or hexagonal. A
hexagonal or other grids including diamond shaped are discussed in [64]. The space-driven or

data independent approach in opposition to data-driven method is proposed in [65].
- Quadtree

It is a tree data structure whose internal nodes have up to four children. It used for
partitioning a 2D space. The space is subdivided into four quadrants or regions recursively.
The Quadtree, also known as Q-tree, was proposed in [66].

The quadtree is useful in image representation, spatial indexing and efficient
collision detection in 2D. A view dependent rendering (view frustum culling) of a terrain data

is also effective with the quadtree. It is also efficient to storing sparse data like some matrix.
- R-tree

A R-tree is a tree structure that uses the minimum bounding rectangle (MBR) or the
bounding box. It is similar to B-trees and researched in [67] [68]. The R-tree stands for range
tree. An internal node is identified using MBR contains all entries of its children node. The
maximum number of one node should be defined. The R-tree is improved by prioritization in
[69]. The R* tree which supports point and spatial data at a time with a few overhead is
proposed in [70].
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- UB-tree

A UB-tree stands for a universal B-tree and B-tree for a balance tree. It is a balanced
tree and can store and retrieve multidimensional data efficiently. It is b+ tree, whose data is
stored only in leaf nodes, and the information is stored in Z-order. The UB-tree was proposed
in [71].

2.3.1 Octree

An octree is a tree data structure whose internal nodes have up to eight children. It
partitions a 3D space by recursive subdividing into eight octants or subspaces, showed in (Fig.
2.5). The octree used for generating isosurface was proposed in [72].

Fig. 2.5: Spatial octree

The octree is very efficient structure in 3D space of the computer graphics. It is
useful in the spatial indexing and the collision detection is efficient in 3D with it. The view

dependent renderings based on it have been also researched.
- Collision detection with octree

The collision detection is very fundamental problem in the applications of computer
graphics like CAD, VR. About 3D collision detection, there is a well surveyed paper [73]
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including not only octree but also other methods.

In the approaches of collision detection, the octree is used for spatial partitioning
representations. It bounds volumes hierarchically in [74] [75] [76]. At the first, the primitive of
the octree is a cube in [77] [78] [79]. The sphere is proposed for the primitive of the collision
detection with octree in [80] [81] [82]. And the method whose the branching is 13 instead of 8

is studied in [83]. The modified octree is used in [84].

- View dependent rendering (view frustum culling) with octree

View dependent rendering is also called ‘view frustum culling’ because it means
removing objects that located outside the viewing frustum from the rendering process. A basic

concept was proposed in [3] like the level-of-detail concept.

The octree as spatial subdivision used for the view dependent rendering is proposed
in [85]. Only the polygons within the viewing frustum are rendered. The hierarchical z-buffer
method is researched in [86]. A z-pyramid is used for visibility test and the invisible nodes of
an octree hierarchy are deleted. A mixed octree/quadtree structure is developed in [87]. This
approach considers not only the location of the observer but also the direction. The octree in
the view dependent rendering is improved for 3D navigation, the visibility octree is proposed

in [88]. An octant test which can halve the number of the test plane is developed in [89].
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Chapter 3. System Overview

3.1 Overview

MC Octree constructign |Node priority numbering | Crack patching

Original
mesh Marching Cube, Adjacent node check Crack check,
—> . . > .
Octree Priority queue patching
offline
online

LOD mesh generation

Priority number,

- Renderi
Node flagging endering

Fig. 3.1: Marching cube octree flow diagram

The input of system is an original mesh or range images. The input data can be
obtained from a range scanner directly. Marching cube nodes (terminal leaf nodes) are created
from these data. The creation methods are slightly different according to the data. If the input
data are the range image, the signed distances are used for configurations of the nodes. If the

inputs are the mesh, the configurations of the nodes are calculated using intersection test.

In the marching cube octree construction phase, a spatial octree with the marching
cube nodes is constructed. The octree is created with top-down approach by subdividing space
recursively but the node configurations — vertices in/out and intersection ratio — are filled up

with bottom-up approach from the leaf node which is created from the input data.
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In the node priority numbering phase, the priorities of LOD are numbered in each
node for a continuous LOD. The numbering is proceeded by adjacent node check with a
priority queue. After the priority numbering, the LOD array is generated for fast LOD mesh
generation in online.

In the crack patching phase, pre-calculated crack patched vertices are stored. The
marching cube nodes which the crack occurs at in run-time are checked and the crack patched
vertices are stored.

After the off-line preprocessing, the LOD mesh is generated in run-time. The LOD
mesh generation algorithm of this paper is efficient by reference only needed nodes to

generate the whole surface of the LOD mesh. It runs with the priority number and the node
flagging.

3.2 Framewor k

The diagram in (Fig. 3.2) describes the relation among the classes. We first get
CDataPoint class data from the input data. CreateFromRage / CreateFromMesh module
converts this to CCubeNode class data. From CCubeNode class data, MakeTree module
makes the marching cube octree using COctCube class data structure. CreateLod module
calculates the LOD metrics and adjusted vertices of the octree. SortLod module does the
priority numbering and makes the LOD array. Using the octree and the LOD array, MakeMesh
module creates the LOD mesh and CalcNormal module re-calculates the normal of the

vertices which adjusted because of crack patching.
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v
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CalcNormal
GetAdjTri
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v

- LOD mech generation

MakeMesh
AddMesh

Fig. 3.2: Marching cube octree framework
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Chapter4. Surface Reconstruction

4.1 Introduction

Our algorithm was designed to rapidly construct the LOD model and generate the

LOD mesh. We approximated the 3D object conceptually with sampling range data in many
resolutions. We used the octree and the marching cube to represent the LOD model. The
operation necessary for the construction of the marching cube octree is relatively simple. We
used the octree that naturally supports progressive transmission, view dependency rendering
and collision detection. We did not implement these features yet but octree-based view-
defendant rendering has been carried out efficiently by [53]. We can construct the LOD model
directly from the range data by using the marching cube data structure, if the Marching-Cube
algorithm is applied for the initial mesh generation. Our algorithm directly generates the LOD

mesh by referencing only the needed nodes of the tree.

4.2 Marching Cube

The Marching-Cube algorithm for medical images like MRI and CT was proposed
[57]. The cube, which includes the in/out configuration of each of the 8 vertices, is classified
into 14 distinct cases. Triangles are created automatically for each case. The vertices of the
triangles are at the midpoints of the cube’s edges. The Marching-Cube algorithm can also be

used to generate the mesh from the range data [58].

To generate triangles, we use the sign and the ratio converted from the signed
distance of the cube’s vertices. The signed distance was proposed for surface reconstruction
from unorganized points [58]. It is defined as the distance between the vertex P and the closest
range point multiplied by +-1, depending on which side of the surface P is. The sign of the

vertex is defined as the sign of the signed distance. The ratio of the edge is defined as the ratio
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of the absolute value of one vertex’s signed distance to that of the others. We can generate
triangles naturally using a low resolution by choosing the proportional point instead of the
midpoint for the vertex of the triangles. The comparison of these two approaches is show in
(Fig. 4.1). The midpoint is used in (a) and the proportional point is in (b).

(b)

Fig. 4.1: Marching cube: low resolution input data

(a) midpoint and (b) intersection ratio

Using an octree for the representation of 3D object is not new idea. The isosurface
generation using marching cubes and octree traversal was proposed in [60]. This study
describes efficient creation of octree based representation. But we applied modified marching
cube configuration to octree structure, thus can construct hierarchies and implement level-of-

detail.

We define a marching cube in this study as the set of signs and colors for each of the
8 vertices, and of ratios for the 12 edges. A marching cube octree is defined as a spatial octree
whose nodes are marching cubes. Since the dimension of the root node is known, we can

determine the relative position and the size of any node in the octree. A null node is defined
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for all edges of the corresponding marching cube that do not intersect with the surface. Thus,
all vertex signs are the same. The null node has no child nodes and null points. Finally, the

nodes of the marching cube octree correspond only to the region of the surface.

For given point seP, normal selN and some cub€ containing vertexy, ..., Vg, we
define the closest poim, distanced and signs for the vertex configuratiouc and cube node
CN as follows:

p, = thelosestpoint tov, ,p, isinC, p, 0P
d, =|v, - p,| (euclidiadistance)
:m n, isnormalof p,,n, ON
Vi=p)en, | '
H 1putside;linside)
CN ={wc, |vc,=s,xd , mOL18]}

By the Marching-Cube algorithm, triangles can be generated easily Qsirand
look-up table.

To apply the marching cube algorithm, the state of the vertices of each cube must be
determined. Signed distance has been proposed as a method of determining vertex states [58].
The signed distancEp) from pointp in a 3D coordinate to the known melhis distance
from p to the closest poirt on M multiplied by signs. If p is insideM. sis +1, otherwise —1.

When data is input from a 3D scanner, an estimistésl used because the réalis unknown.
A tangent plane is calculated for each pgntwhich is approximated tM, and the signed
distance fromp to the tangent plane is used instead of the actual signed distance. The

approximated signed distance is defined as follows:

f(p)=dist (p) = (P-0,) .

Here,o, is the center of the tangent plane api$ the normal vector of the tangent plane.
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The tangent plane is calculated by using the relation between adjacent points
because topology information is not used. The available directions of tangent plane are two in
this method, so an optimization process is used to choose direction. But we use the topological
structure of the data because it is assumed that the input data is a 3D range image. Thus, any
point has 4 adjacent points except for the boundary because 3D range images form a lattice. 4
triangles are drawn connecting these points as in (Fig. 4.2). Each triangle’s normal vector is
calculated by the cross product. The tangent plane normal is the average of these 4 normal

vectors and the center point of the tangent plane is the value of the center input point.
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00 Q00000
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Range Data

Fig. 4.2: Normal vector calculation of ranger data

Recently the range scanners support the polygon format like ‘PLY’ as their output.

Even when the range image is not used as input, we can run the marching cube algorithm.

First, the vertex in mesh is regarded as the range point and the normal of the vertex

is regarded as the normal of the point. Then we apply these to the signed distant algorithm.

Second, the in/out of the vertex of the marching cube is calculated from the cube and

the mesh. The intersection on the edge of the marching cube is also calculated from these.
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4.3 Algorithm

In this section, we describe about basic data structures and classes of range data,

cube node and marching cube node that defined in the previous chapter.

4.3.1 Range Data

DataPoint

Color m_Color

Point3D m_Normal

This is a class for the points of input range data defined as poit setmal seiN.
The class Point3D contains coordinates x, y and z. The color variable m_Color is for the

example attribute of a data point. The ‘=" operator is overridden for input data.

If the output of the range scanner is a mesh format file like PLY or if we want to
convert other mesh format file to our model’s input, the conversion is needed. We took the
vertex of the mesh as the point and the average of this vertex’s adjacent triangles’ normal as

the normal of this point, m_Normal.
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4.3.2 Cube Node

CubeVertex

iX, iy, iz /lindex
dist /[distance
flag /Isign

Color color //color attribute

CubeNode

SetVertex
SetPosition

Config

m_iX, m_iY, m_iZ; //index
m_fSize; /Isize of cube node

CubeVertex *m_pV//vertices

This is a class for a cube no@&l defined as above. The distance and the sign are
defined in the structure CubeVertex. SetVertex module is used for input vertex and SetPosition

module determines where the node is located. For each range data point inside the node,
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Config module examines whether it is the nearest point to each vertex and determine the sign
of the vertex. Config module will be called from CreateFromRange module or
CreateFromMesh module.

4.4 Reaults

When the input is the range data, the intermediate results can be showed. The
resolution of the initial mesh is determined by user. The resolution means the number of the
marching cubes in one of axis (X, Y or Z). For example, if the resolution is 256, the total
number of the marching cubes is 256*256*256. Thus, the more the resolution is, the smaller
the cubes are and the more detailed the mesh describes. But there can be lots of holes if the
range data aren't dense. So the resolution of the marching cubes can not be bigger than that of

the range data and by the experiments, the double is proper.

Fig. 4.3: Marching cube: cube’s resolution comparison

The marching cube’s resolutions are (a) 60 and (b) 200.

(Fig. 4.3) illustrates the comparison results by the resolution. The resolution of (a) is
60 and the number of polygons in mesh is 8926. The resolution is 200 and the number of the

polygons is 62124 in (b). The dark spots in the object are the holes that the marching cube can
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not located at. When the resolution is higher, the more detailed mesh is obtained but there exist
many holes.

(Fig. 4.4) shows the front and the side view of the implemental result. The input data
are generated from mesh models instead of range scanner. The generated range images are
from front, left 45 and 90 degrees. The front and left side of the model are well constructed but
the rear and right side are not so well yet. The total model is constructed when the range data
of all directions are given. Because the marching cube method is a local operation and don't
need additional zippering, the range data of uncompleted area are added to continue
reconstructing the model. Thus, the intermediate results like (Fig. 4.4) are useful to determine

needed range images to reconstruct the whole model.

Fig. 4.4: Surface reconstruction: Beethoven
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Chapter5. L evel-of-detail Mesh M odeling

5.1 Marching Cube Octree

The cube data structure of the Marching-Cube algorithm is basis of the marching
cube octree. Instead of signed distance [58], the marching cube octree utilize the ratio on each

edge for generating triangles.

For given position vectaow, vertex sigrs, and edge ratier,, and the marching cube

nodeMC containing vertex;, ..., vgare defined as follows:

true  ifv, ignside.
:{false ifv, iutside.
0 ifadjacent v ertexssignisame.
" :{i i0(0)) otherwise
MC ={ v} O{s, [n=1--8} O {er, Im=1---12}

Then for given some marching cube nadée following recursive definition is the

marching cube octreg.

r ifr isleaode.
T =ro UT.  otherwise

s isr 'schild

The creation of the marching cube octree starts with marching cube nodes of the
most detailed resolution (leaf node) and merged into parent’s level as (Fig. 5.1). For leaf
marching cube nodes, vertex sign is the same as corresponding cube node and edge ratio is

obtained from simple divide calculation.

31



=

P

@

Fig. 5.1: Creation of the parent node

For internal nodes, a parent node can be constructed by referencing its child nodes.

The decision on the sign of the vertex is classified into four cases (Fig. 5.2):

1) If a corresponding vertex exists in the child node, the sign of vertex ‘A’ is the
same as that of child node.

2) Else if an adjacent vertex exists in the child nodes, the sign of vertex ‘B’ is the
same as the adjacent vertex of the child node.
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3) Else if a diagonal vertex exists in the child nodes, the sign of vertex ‘C’ is the

same as the diagonal vertex of the child node.

4) Else if no corresponding, adjacent and diagonal vertex exists in the child nodes,

the sign is the same as that of the center vertex (vertex D).

D
//' C
— : :
A : Y WY
a b a b
R/—/ H/—/
a/2(a+b) (2a+b)/2(a+b)

Fig. 5.2: Conversion of the marching cube

In case 2), several adjacent vertices can exist in the child nodes, but their signs will
all be the same. The color value is copied in the same manner. The ratio is calculated easily by
extending the vertex that has the triangle’s vertex in it (Fig. 5.2). The ratio of the vertex that

does not have the triangle’s vertex in it is unnecessary.

The advantage of containing the ratio on edges instead of the distance of vertices is
simplifying crack patch problems by sharing the same vertex of triangle generated from the
different level marching cube node. Using the origin and the size of node, the parent-children
relationship can be calculated but the pointer data structure is used for the efficiency of
implementation. The intermediate data structure of our algorithm shows in (Fig. 5.3). The right

part of the (Fig. 5.3) is the cube configuration figure.
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Fig. 5.3: Marching cube octree

5.2 Node Priority Numbering

To control the LOD of the mesh, we assign a priority number to all the nodes. The
mesh generated from all nodes of one level has exactly twice the resolution of the mesh from
of the parent nodes’ level. Thus, only the LOD of the transition from one level mesh to next is

needed to be considered. The priority numbering determines which node expands first in the
same level.
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(b)

Fig. 5.4: Node priority

The priority of node (a) is higher than (b).

We use the area difference as the LOD metric. For given marching cubg aode

r, the area differenckl, and the triangulation functioRyc(q) by Marching-Cube algorithm
are defined as follows:

Fue @ = 9 t { | istrianglgeneratedsingviarching-Cubelgorithmfrom g}

|\/|r= Z ZFMC(S)_ZFMC(r)

s isr schild area

The higher the area difference is, the more detailed is the description of the local
feature and the higher the priority is. To describe the 3D object with fewer triangles, the higher

priority node expands first in the same level. The example of node priorities comparison is
illustrated in (Fig. 5.4).
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But to describe the complex parts of the object in detail, we improved some features.
This algorithm starts from the root node. The expanded nodes are marked as ‘marked’. When
the level differences between some node and its all surrounding nodes are less than 2, that
node can be expanded. The node of the biggest the area difference - LOD metric - in the
expandable nodes set is inserted in LOD array. Then this node is marked as ‘marked’. This
algorithm can be implemented effectively using the priority queue (sorted list). The pseudo

code of the node priority numbering is as followed.

Insert root node to Slist
(Slist is sorted list by LOD metric)
do
for node n (n is the 1,2,...,m-th node of Slist)
if all n's adjacent node is 'marked' or none
Insert n to LOD array
mark n's children as 'marked'
Insert n's children to Slist
exit loop

until Slist is empty

The example of the priority numbering helps the understanding of this algorithm. It

is illustrated in (Fig. 5.7) and explained in section 5.4.3.
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Fig. 5.5: Marching cube octree with LOD array

To generate the LOD mesh rapidly, we save this priority number in a referencing
array, the LOD array. The number N means the N-th node to be expanded. Thus, its child

nodes are triangulated, as shown in (Fig. 5.5).
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5.3 Crack Patching

Fig. 5.6: Crack patching

Cracks are generated at the interfaces of nodes with varying levels (the left figure of
(Fig. 5.6)). This is a common problem with adaptive subdivision algorithms. Crack patching
algorithm was proposed in [62] and we use that in our algorithm. This algorithm can apply the
case that adjacent node’s level difference is one. For fast generation of the LOD mesh, thus we
calculate all compensation points before the mesh is generated. Only the compensation points
of crack-happen nodes are calculated and saved. In the right figure of (Fig. 5.6), the
compensation poinR of P3 is a cross point oP1P2 and a perpendicular line ®©1P2

containingP3.
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X, =% =d(X =x)
yz_ylzd(Y_yl)
z,-7=d(Z-2z)

(% =X)(X =X)+ (Y, =y )Y = y3)+(2,-2)(Z-2)=0
X =1/d(x, - %) +%
Y :1/d(y2— yl) Y

Z=1/d(z,-2)+2,

The crack is able to patch by moving poiR8 to R and the others to the
corresponding point.

5.4 Algorithm
5.4.1 Octree Cube Node

OctCube : CubeNode

AddChild
SetNext

GetNext
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GetMesh
CalcArea

Config /Iset internal node's configuration

OctCube* m_pChild //child nodes
OctCube* m_pNext//pointer to next (sibling)

m_fXPoint //distance ratio on edges

This is a class for the marching cube ndié and additional pointers to make an
octree. AddChild module adds the child node and SetNext module makes a connection to the
sibling node. GetNext module is implemented for retrieval. GetMesh module triangulates the
node by referencing the lookup table in Marching Cubes algorithm. CalcArea module
calculates the sum of the areas of triangles made by GetMesh module. This is implemented for

the LOD metric calculation.

For internal nodes, a parent node can be constructed by referencing its child nodes.
The decision on the sign of the vertex is classified into four cases (Fig. 5.2). The attributes are
copied in the same manner. The ratio is calculated easily by extending the vertex that has the

triangle’s vertex in it (Fig. 5.2). This is implemented in COctCube.Config module.

40



5.4.2 Making Octree

OctMesh

OctCube* m_pRootCube /Ipointer to root node

m_nLevel /llevel of octree

CreateFromMesh
CreateFromRange

MakeTree //make tree and set node's configuration

As an initial input for our model, CreateFromRange module makes the cube nodes
from the range data. If the input is mesh, CreateFromMesh module is used. From the created
cube nodes, MakeTree module constructs the octree consists of the marching cube nodes. This

calls Config module of the class COctCube in (6).

The octree is created with top-down approach by subdividing space recursively. But
the internal node’s configurations which contains vertices in/out and intersection ratio are
filled up with bottom-up approach from the leaf node. The leaf nodes are created from the
input data.
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5.4.3 Priority Numbering

LODARRAY

OctCube* node

metric

PriorityNumbering

LODARRAY m_alod //LOD array

Createlod
IsOnEdge
IsOnFace
GetVertex
GetAdjVertex
SortLod

IsExpandable

To make a controllable LOD model, we calculated the metrics of each node.
CreateLod module is implemented for this purpose. The adjusted vertex for crack patching is
pre-calculated and stored in runtime for speed up. IsOnEdge module, IsOnFace module,

GetVertex module and GetAdjVertex module are implemented for the pre-calculation.
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In COctMesh.SortLod module, this algorithm starts from the root node. The
expanded nodes are marked as ‘marked’. When the level differences between some node and
its all surrounding nodes are less than 2, that node can be expanded. The node of the biggest
the area difference - LOD metric - in the expandable nodes set is inserted in LOD array. Then
this node is also marked as ‘marked’. IsExpandable module is implemented for this

examination.

Fig. 5.7: Node priority numbering

Here is the example of priority numbering in (Fig. 5.7). The algorithm begins with
putting the root node to the priority queue Q. Then the root node is inserted to LOD array with
number ‘1'. The children of the root node are inserted to Q. The LOD number 2, 3, 4 and 5
nodes in the same level are inserted consequently. Then the LOD number 6 node is inserted to
LOD array because its LOD metric is bigger than any other nodes in Q and the adjacent nodes

of it are all marked as ‘marked’. The algorithm continues until Q becomes empty.

The insertion operation of the priority queue is the same problem ‘insert into sorted

list'. The complexity analysis of this operation is explained in the discussion chapter.
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5.4.4 Crack Patching

Fig. 5.8: Calculation of the normal of the adjusted vertex

The adjusted vertex for the crack patching is pre-calculated in CreateLod module. If
the vertex p is moved to p’ for crack patching (Fig. 5.8), the normal of p’is needed to calculate
newly. For given adjusted vertgkand triangleA, B, the normal ofy’ is as follows.

n(A) +n(B) +2*n(C) _ n(A") +n(C)

n(p’) = 4 5

~ n(A") =n(B")
CalcNormal module calculates the normal of the adjusted vertices using above

method. GetAdjTri module is implemented for find the adjacent triangle of the adjusted vertex.
(ex. Triangle C for vertex p’ (Fig. 5.8)).

CrackPatching

CalcNormal //re-calculate normal

GetAdjTri
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Chapter 6. Run-time Framework for L evel-of-detail Mesh

6.1 Level-of-detail Mesh Generation

Using the algorithm mentioned above, we constructed the marching cube octree
presentation of a certain mesh. In this section, we consider generating the LOD mesh using
this representation. We generate the LOD mesh rapidly and efficiently by referencing the LOD
array.

The LOD of the LOD mesh is controlled by using the LOD array. In the LOD array,
there is a triangulated node sequence of all nodes in the marching cube octree. When the next
node is triangulated, the number of triangles in the mesh is increased. We check each node
already expanded in its sub-tree on the reverse order sequence from given priority number’s

node. The pseudo code is written as follows:

For all node n (n’s priority number is i, i-1, ... , 2, 1)
If all n’s child nodes are expanded’,
continue
Otherwise,
triangulate n’s child nodes except 'expanded’
mark n as 'expanded’

end of loop

The flag ‘expanded’ are no related to that of node priority numbering.

If the number of triangles in the mesh is given, we convert this input to the priority
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number by using the accumulation table. The accumulation table contains a triangle increment
by the priority order triangulation. Thus, we can get the approximated priority inversely from

the number of triangles. The final data structure of our algorithm shows as followed.

@ «— Rendering

Fig. 6.1: Direct generation of the LOD mesh

6.2 Algorithm
6.2.1 Mesh Generation

The LOD of the mesh is controlled by referencing the LOD array. In the LOD array,
there is the sequence of the node to be triangulated. On the reverse order from the given
LOD’s node to the first node, we examine whether that node’s child nodes are all expanded or
not. If they are all expanded, it means that the whole area of the object is covered by triangles.
COctMesh.MakeMesh module is implemented by this method and AddMesh module makes

the mesh structure of OpenGL for rendering.
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LODMeshGen

MakeMesh

AddMesh

Here is the example of the LOD mesh generation. Let's the input LOD number is 66.
First, the children nodes of the LOD 66 node are triangulated and the LOD 66 node is marked
as ‘expanded’. Then the LOD 65 node’s children nodes are expanded and the LOD 65 node is
marked. Next, the children nodes of the LOD 64 node are triangulated except the LOD 66
node. And the LOD 64 node is marked. The LOD 63, 62 node are traversed by a similar
method. When the LOD 61 node is visited, the LOD 70, 68, 69, 67 node are triangulated.

From the LOD 60 node to the LOD 52 node, the algorithm proceeds in the same way.
When the LOD 51 node is visited, the algorithm is continued without any triangulation
because the children of the LOD 51 node — the LOD 52, 53, 60, 58, 55, 59, 54 and 57 node -
are all marked as ‘expanded’. The ‘expanded’ mark of a hodeans “the area covered by

the nodeN is triangulated by some nodes in the sub-tree whose root niitle is
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6.3 Results

The hardware specification of implement environment is as follows. The computer
is Intel™ Pentium® 4 CPU 2.40GHz. The RAM is 1GB. OS is Microsoft™ Windows® Pro
v2002 SP2. The system is implemented under Visual C++® 6.0 with OpenGL.

Recently most of range scanners provide the polygon format data as the results like
‘PLY’ files. So we generate the range image data from them. The vertices are used as the

points and the normal vectors are calculated from neighbor triangles’ normal.

The ‘ball joint bone’ (Fig. 6.3) and the ‘Venus statue’ (Fig. 6.4) meshes are used for
experimental data and they can be downloaded from Cyberware™ homepage. The results are
showed with the LOD decreased by 20%. The meshes of the left side are wire frames and of
the right side, rendered meshes. The numbers of triangles and vertices are showed in the table

on the right.

These results show the marching cube octree model is feasible for a LOD
representation. In flat area, the number of the polygons is fewer. And in the area have
curvatures, the number is more relatively. The upper right part (ball part) of the ball joint bone
and the head’s side of the Venus statue are coarse in low LOD. But the neck-like part of the

ball joint bone and an eye, nose, mouth part of the Venus statue is detailed.
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LOD (%) | triangles| vertices

100 18159 | 9106

80 14735 | 8228

60 11565 | 7422

40 7967 | 5578
= w-. ( 20 4212 | 3077
=

Fig. 6.3: LOD mesh generation results: ball joint bone

(Dataset courtesy of Cyberware™)
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LOD (%) | triangles | vertices
100 28560 14335
80 23152 12835
60 18216 11102
I 40 12635 8757
20 6838 4961

Fig. 6.4: LOD mesh generation results: Venus statue

(Dataset courtesy of Cyberware™)
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Fig. 6.5: LOD mesh generation results: colored woman body

(Dataset courtesy of Cyberware™)
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Woman

LOD (%) | triangles| vertices| LOD (%) | triangles| vertices

100 107074 | 53802, 40 40478 30849

80 81157 53134 | 20 22037 14138

60 56117 43703 1 1998 1193
Table 6.1: Numbers of triangles, vertices in examples of woman body

The ‘Woman body’ meshes are also experimental data of Cyberware™ homepage.

The results are showed with the LOD decreased by 20%. The meshes of the left side are wire

frames and of the right side, rendered meshes in (Fig. 6.5). The numbers of triangles and

vertices is showed in (Table 6.1). These results show our model keeps the attributes like colors
in any LOD.

Among the other attributes, the texture coordinates are important in coarse meshes.

Even when a very simplified model is used, the curvature or some featured part can be show

naturally by texture mapping. So the attributes preserving is useful feature of the LOD

modeling.
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Fig. 6.6: LOD metric graph
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Fig. 6.8: LOD metric graph (accumulation)

LOD metric — the difference between the sum of a node’s triangles area and the sum
of its all child node’s triangles area — data are used for the priority numbering. The graph in
(Fig. 6.6) is LOD metric data of ‘ball joint bone’ mesh after the priority numbering. The left
graph is the case of previous level-based algorithm [61] and the right graph is of improved.
The left graph shows level discontinuity. They mean our method is beyond level constraint and
more continuous model. The difference is clearer in (Fig. 6.7) which is the part of data less
than 300 of LOD.
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The accumulation graph is showed in (Fig. 6.8). This shows the improved algorithm
is more robust about level discontinuity. But the quality of LOD modeling is the problem of a
human perception. So the results are not judged easily. The ‘visual fidelity’ is another key

issue of the LOD modeling.
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Chapter7. Discussion

In this chapter, the proposed model is comparing to the other models. The
multiresolution analysis and the progressive meshes are the break-through researches in the
field of the continuous LOD modeling. Each model is a representative method for an adaptive

subdivision and a geometry removal. The comparison table is itemized as follows.

] Progress
Time
Time Collision View Attribute ive Crack
] (LOD | Space . . .
(Modeling) Mesh) detection| dependencjpreservatioftransmis$ problem
es
sion
M.A. o(rf) FP. | on)| o) o(n) No Yes | Patchinp
P.M. o(rf) FP. | Om)| oO(Mm) | O(ogn) Yes Yes Free
M.C.O.] O(nlogn) | Ref. O(n) | O(logn) | O(log n) Yes Yes | Patching

Table 7.1: Comparison to related works

M.A. : Multiresolution Analysis, P.M. : Progressive Meshes, M.C.O. : Marching

Cube Octree / F.P. : floating point operation, Ref. : referencing
- Time (Modeling)

M.A. starts from base mesh that is the simplest. When one triangle is divided and
new vertices are moved, it calculates the moving points through whole initial mesh. So it's
complexity is O(A). The overhead of crack patching is through all vertices. So an overall

complexity is not changed.
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P.M. references all edges whenever it picks the edge to be collapsed. P.M. uses
energy function optimization over whole vertices in this step, so it's time complexity ¥ O(n
The edge collapse operator is a reverse of the vertex split, thus one vertex is added to one

operation.

The proposed algorithm references each range datum just once and calculates the
configuration of octree. The crack patching is local calculation through whole node. In the
node priority step, the priority queue is always sorted. The insertion to the priority queue is the
same problem as “insert one entity to sorted list.” The complexity of the insertion is O(log n).
Then this operation proceeds over whole nodes. Thus, our algorithm’s time complexity is O(n
log n). But the unit of the operation is not a vertex, a node which contains several vertices. So

the time is slightly faster than a vertex based operation.
- Time (LOD Mesh Generation)

In online mesh generation phase, M.A. starts from base mesh. To reach a certain
LOD it divides triangles and moves the new vertices serially. It's time complexity is O(n) but

each dividing and moving step needs floating point operation.

P.M. uses edge collapse or vertex split operation serially, too. Thus, it's complexity

is also O(n) and these operation needs floating point operation, too.

Our model references only needed nodes to cover whole surface of mesh, so its
complexity is O(n). But there’s no float point calculation because ours needs only referencing

operations to generate triangles.

For all three models, the traversal time is regardless compare to a triangulation. All

models need to follow the links or pointers.
- Space

Because M.A. needs the space for base mesh and coefficients of vertex moving, its
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space complexity is O(n). The space of pre-calculated crack patching vertex is smaller than

that of base mesh and coefficients.

The space complexity of P.M. is also O(n). It needs the space for base mesh and
coefficients of edge collapse and vertex split. the space for the links which determined what

vertex is split into two vertices is smaller than that of coefficients and the base mesh.

Our algorithm uses the octree for data structure. The number of internal nodes is less
than the external nodes. In case of complete binary tree, the difference is 1. The number of the

internal nodes of complete octree is calculated as follows.

[, :theumberofinternatodesnoctree
E, :theumberofexternalodesnoctree
E,=8"

,=8 1,=8°+8"

| =8 +8+...+8""

g =8+...+87"+8"

n,=8-1

1
ul,==(, -1
v=2(E D

The space complexity for external nodes is linear to the total number of vertices of
initial mesh and is O(n). The space for octree structure is smaller than the leaf nodes. Thus, the

space complexity of ours is O(n).
- Collision detection

Collision detection is very famous and important problem in 3D computer graphics.
M.A. and P.M. have no advantage for collision detection. They must search all vertices to find
a collision. So the complexity of collision detection of them are O(n). Because our model use

3D spatial octree, the collision is detected in O(log n).
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- View dependency rendering

For fast rendering of 3D scene, view dependency rendering is very useful. M.A. can
not support any special feature. All vertices must be searched to check view dependency. So
its complexity is O(n). P.M. presents some features to speed up the view dependency rendering.
It is some kind of refinement to calculate view dependency [32]. With this overhead its view
dependency complexity is O(log n). The special octree used in our model is also very useful

data structure for view dependency. The complexity of our model is O(log n).

- Attributes preservation

The attributes like color, texture and normal are necessary in computer graphics.
Because M.A. starts from the simplest base mesh, there is no attributes preservation method.
But P.M. starts from the initial mesh that is the most complex. Thus, it can preserve

attributes. Our model is the same as P.M. The experimental result shows in (Fig. 6.5).

- Progressive transmission

All of them present progressive transmission. M.A. transmits the base mesh first and
moving coefficients sequentially. P.M. also transmits base mesh first then coefficients next. In

our model, breadth first traversal is used for progressive transmission.

- Crack problem

Crack problem must occur whenever the level idea is used. So M.A. and ours have
problem and present solution for it. The solution is similar to each other. It is to move detailed

level’s vertex to patch the crack.
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Chapter8. Conclusion

8.1 Summary

In the paper, the improved method of LOD modeling using the marching cube octree
was proposed. We create the representation easily and efficiently by using the marching cube
features. We can take advantage of the octree representation in a 3D graphics system. Our
LOD model can support adaptive simplification, progressive transmission, view dependency
rendering and collision detection. By using the marching cubes, our LOD mesh generation

algorithm becomes efficient without floating point operations.

In the surface reconstruction, modified marching cubes are used for reconstructing
the initial mesh. Instead of a midpoint which is used in the original algorithm [57], the ratio of
adjacent vertex is used for the triangulation. The results are also feasible when low resolution

data is given. These marching cubes are used for the leaf nodes of the marching cube octree.

The marching cube octree is constructed using the octree structure with the
marching cubes. To support continuous LOD between levels, all nodes are numbered by
priorities. Using adjacent node check and priority queue, node priority numbering can traverse
both breadth and depth.

The LOD meshes are generated at run-time using proposed efficient algorithm. It
triangulates only needed nodes of the marching cube octree to cover up the whole surface of
mesh. Using the priority numbers on nodes and flagging, the LOD mesh can be generated by

only referencing without floating point operations which the other LOD models need.

The contributions of this paper are as follows; to support a continuous LOD,
modifying the marching cube octree (vertex ratio on edge of marching cube) and priority

numbering the nodes with an algorithm that can simplify flat area more. An efficient LOD
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mesh generation which refers only needed nodes without floating point operations. The

proposed model can collision detection efficiently in the complexity of O(log n).

8.2 FutureWork

In proposed model, the marching cube is divided into halves in the next level. If we
control the size of the next level’s cube and formulate it, we can construct a more detailed
continuous LOD model. In that case, the fastness and simplicity of the modeling may be lost.

And the advantage of sampling simplification is no longer available.

The marching cube octree LOD model can be extended to simplify only viewing
area. Using the feature of an octree, it is thought that the model can be developed efficiently.
View-dependent LOD modeling can be applied under extra large models with external
storages. An octree is efficient data structure for collision detection in 3D graphics. With

proposed model, it is thought that the LOD of collision detection can be modeled.
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Summary (in Korean)
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